A Patient’s Own Vital Signs – Using RWD for Pain Care Planning

Earlier this year (and quietly, we might add) a group of Northwestern University engineers published a study that focused on how to leverage data hiding in plain sight for pain care.  The scientists developed and applied artificial intelligence (AI), or machine-learning, algorithms to physiological data.  They used respiratory rate, blood pressure, heart rate, body temperature and oxygen levels from patients with chronic pain from sickle cell disease. Their approach outperformed baseline models to estimate subjective pain levels.  It also detected changes in pain – atypical pain fluctuations.

Sickle Cell Anemia Infographic showing endothelial damage, vaso-occlusion and hemeolysis

Pain is subjective, so it’s tricky to assess when trying to treat patients,” said Northwestern’s Daniel Abrams, senior author of the study. “Doctors don’t want to undermedicate patients and not provide enough pain relief. But they also don’t want to overmedicate their patients because there is a risk of side effects and addiction.

The study was published March 11 in the journal PLOS Computational Biology. Find it here. Boom! This is the first paper to demonstrate that machine learning can be used to find clues to pain hidden within data from patients’ own vital signs.  Watch for more blog posts on pain RWD.

More from Celéri Health...

Schedule demo
Please schedule a time that works for you and we will connect with you to provide a demo.
Contact
Let us know how to reach you and we will be in touch within 24 hours.
Ask us anything
Talk to us
Let us know how to reach you and we will be in touch within 24 hours
Apply now
File type: doc, docx, pdf, xls, xlsx. File size: 10Mb.
sent
Request sent
"Thank you for your inquiry, we will be in touch within 24 hours."
Done